BME Fizikai Tudományok Doktori Iskola
PhD témajavaslat

A témavezető neve: Nemes-Incze Péter
- munkahelye: MTA - Energiatudományi Kutatóközpont, Topológia Nanoszerkezetekben Lendület csoport
- beosztása: tudományos munkatárs
- tudományos fokozata: PhD
- email címe: nemes.incze.peter@energia.mta.hu
A konzulens neve: Csonka Szabolcs
- tanszéke: Fizika tanszék, Természettudományi Kar
- beosztása: egyetemi docens
- tudományos fokozata: PhD
- email címe: csonka@mono.eik.bme.hu
A doktori munka készítésénak helye és címe:
MTA - Energiatudományi Kutatóközpont, KFKI kampusz, Csillebérc
1122 Budapest, Konkoly-Thege út 29-33
A kidolgozandó feladat címe: Creating „twistronic” devices with layered materials
A téma rövid leírása, a megoldandó legfontosabb feladatok felsorolása:

Layered materials can be exfoliated using the “scotch tape” method, down to the single unit cell, or even atomic, thickness. Such materials include: graphene, transition metal chalcogenides (ex. MoS2), etc. These materials host a whole spectrum of physical properties, we can find among them: metals, semimetals, semiconductors, superconductors, topological insulators. After exfoliation, these materials can be stacked on top of each other, forming atomically perfect interfaces and creating new, artificial 2D electron systems. This is achieved through controlling the stacking order and crystallographic orientation (twisting) between the individual layers. For example, a bilayer of graphene with an interlayer twist angle of 1.1 degrees becomes a non-conventional superconductor, while the individual layers show no sign of superconductivity. This approach can be applied to the vast library of 2D materials, with the promise of exciting new “emergent” physics through low angle twisted layering.

The PhD student will use existing and new techniques to exfoliate layered materials stack them with high rotational precision. Most work will be done in a glovebox environment, under N2 gas, with O2 and H2O impurity levels below the 1 ppm level. The single layers and rotated heterostructures will be investigated mainly using state of the art ultrahigh vacuum, low temperature scanning tunneling microscopy. Furthermore, using charge transport measurements and Raman spectroscopy.

The work will be conducted with the aid of international partners and from Budapest (BME, ELTE, Wigner).

The PhD student will have the opportunity to work in a young and motivated research team, using the most modern experimental techniques available at the Nanostructures Department of the Centre for Energy Research of the Hungarian Academy of Sciences (MTA EK).

Requirements and expectations regarding the applicant: good knowledge of solid state physics and quantum mechanics. An inquisitive and motivated mind.

Contact: Nemes-Incze Péter: nemes.incze.peter@energia.mta.hu

KFKI Kampusz (1121 Budapest, Konkoly-Thege way 29-33), 26-os épület, 21b iroda.

https://www.energia.mta.hu/~nemes/

 

A jelentkezővel szemben támasztott elvárások:

Requirements and expectations regarding the applicant: good knowledge of solid state physics and quantum mechanics. An inquisitive and motivated mind.

Nyilatkozat: A fenti munkahelyen a javasolt témában kutatás feltételei biztosítottak, a téma meghirdetését a munkahelyi vezető jóváhagyta.
Budapesti Műszaki és Gazdaságtudományi Egyetem
Természettudományi Kar
1111 Budapest, Műegyetem rakpart 3. K épület I. em. 18.
www.ttk.bme.hu