BME Doctoral School of Physical Sciences
PhD témajavaslat

A témavezető neve: Szunyogh László
- tanszéke: Department of Theoretical Physics
- beosztása: Professor
- tudományos fokozata: Doctor of the Hungarian Academy of Sciences
- email címe: szunyogh@ttk.bme.hu
A doktori munka készítésénak helye és címe:
Department of Theoretical Physics
1111 Budapest, Budafoki út. 8.
A kidolgozandó feladat címe: Magnetic correlations in novel two-dimensional heterostructures and molecular magnets
A téma rövid leírása, a megoldandó legfontosabb feladatok felsorolása:

Two-dimensional systems with magnetic order are a key resource for next-generation spintronic and topological electronic devices. Many of them exhibit topological magnon spectra and host skyrmions providing thus a low energy alternative for classical information processing. Moreover, single molecular magnets have great potential as quantum information storage and processing units in future quantum computers.

The Korringa-Kohn-Rostoker (KKR) and the Linearized Muffin-Tin Orbital (LMTO) Green's function techniques in conjunction with the torque method were successfully used in describing a large variety of metallic magnets. However, many of the novel 2D materials are challenging to study within the KKR or LMTO framework because of their dimensionality, geometry and chemical composition. To overcome this problem, we recently extended the non-relativistic torque method to local orbital schemes employing non-orthogonal basis sets and implemented this formalism in the SIESTA code. [L. Oroszlány, J. Ferrer, A. Deák, L. Udvardi, and L. Szunyogh, Physical Review B 99, 224412 (2019)]

The newly adapted method is ideally suited for investigation of low dimensional structures and hybrid organometallic compounds. Within this research project the PhD student will acquire a deep knowledge of the new code and investigate experimentally relevant quantities such as magnon spectra and devise effective magnetic model parameters suitable for large-scale spin dynamics simulations. Particular attention will be paid to the relativistic extension of the method. This will enable the efficient calculation of tensorial exchange interactions including anisotropies and the Dzyaloshinsky-Moriya interaction that makes possible to study chiral magnetic phenomena on ab initio level. Moreover, by using a Green’s function perturbation approach, we will  attempt to calculate fourth-order spin-interactions proposed to play an important role in stabilizing complex non-collinear magnetic structures, e.g. nanoskyrmions. Our aim is to study novel magnetic phenomena such as two-dimensional ferromagnetism in Cr based monolayers, single molecular magnetism in structures with Mn and Fe cores and magnetic topological systems such as Weyl magnons in antiferromagnetic insulators and in 2D van der Waals heterostuctures.

The PhD work will be co-supervised by László Oroszlány (ELTE) and a strong collaboration with Prof. Jaime Ferrer and his group at the Oviedo University (Spain) is also foreseen.

A jelentkezővel szemben támasztott elvárások:

thorough knowledge in relativistic quantummechanics, theoretical solid state physics and strong motivation for computational research

Nyilatkozat: A fenti munkahelyen a javasolt témában kutatás feltételei biztosítottak, a téma meghirdetését a munkahelyi vezető jóváhagyta.
Budapesti Műszaki és Gazdaságtudományi Egyetem
Természettudományi Kar
1111 Budapest, Műegyetem rakpart 3. K épület I. em. 18.
www.ttk.bme.hu