Kétdimenziós hibrid nanoáramkörök vizsgálata

Nyomtatóbarát változatNyomtatóbarát változat
Cím angolul: 
Investigatgion of 2D hybrid nanocircutis
Típus: 
BSc szakdolgozat téma - alkalmazott fizika
BSc szakdolgozat téma - fizikus
MSc diplomamunka téma - nanotechnológia és anyagtudomány
MSc diplomamunka téma - kutatófizikus
Félév: 
2018/19/2.
Témavezető: 
Név: 
Csonka Szabolcs
Email cím: 
csonka@mono.eik.bme.hu
Intézet/Tanszék/Cégnév: 
BME Fizika Tanszék
Beosztás: 
docens
Elvárások: 

Alapos szilárdtestfizikai és kvantummechanikai előismeretek, jó angol nyelvtudás, motiváció kísérleti munkára.

Leírás: 

A grafén a szén kétdimenziós változata, melyet a grafit egyetlen atomrétege alkot, és a nanoelektronika talán legígéretesebb anyaga: kiváló elektromos vezetőképessége van, és a lineáris elektron spektrum következtében az elektronok sok tekintetben relativisztikus viselkedesést mutatnak. Grafénben kiemelkedő mobilitású nanostruktúrák hozhatók és más kétdimenziós anyagokkal kombinálva alkalmas lehet elektron-optikai, spintronikai kísérletekre, illetve új, topológikus fázisok létrehozására.

A legelterjetebb módszer nagy mobilitású grafén minták létrehozására a grafén bór nitrid (BN) kristályok közé szendvicselésén alapul. Az elmúlt években rájöttek, hogy ezt a módszert tovább fejlesztve, kétdimenziós kristályokat kombinálva új anyagok hozhatók létre. Ezt a Lego-szerű építkezést „van der Waals engineeringnek” nevezik és több ígéretes építőelemet azonosítottak, amiből egyrétegű, kétdimenziós anyag hozható létre. Ezek között félvezető, szupravezető, mágneses, vagy nagy spin-pálya csatolással rendelkező anyagok is találhatók, és ezen anyagokat grafénra helyezve a grafénben szupravezető korrelációk vagy spin pálya kölcsönhatás hozható létre.

A diplomamunka célja ezen anyagok felhasználásával új egzotikus, topológikus fázisok létrehozása és ezek tanulmányozása. Több kísérlet utalt arra az elmúlt években, hogy a grafénban például egy kvantum spin-Hall állapot hozható létre. Ezt szupravezető elektródákhoz csatolva topológikus gerjesztések, Majorana és parafermionok hozhatók létre. Ezen részecskék a topológikus kvantumszámítógépek alap-egységét alkothatják, és nem kommutatív (nem-ábeli) kicserélési relációval rendelkeznek. További érdekes kérdés, hogy a szuperáram, ami a kvantum Hall él-állapotban megjelenik, milyen tulajdonságokkal bír. Végül sok izgalmas elektron optikai javaslat született ezen struktúrák alkalmazására, mint például Cooper-pár feltörő áramkörök létrehozása, mely az elektronok összefonódott forrását adja.

A diplomamunka keretében a jelölt bekapcsolódna új kétdimenziós heterostruktúrák fejlesztésébe, melynek során a grafént egyéb egzotikus anyagokkal kombinálva (pl. erős spin-pálya kölcsönhatású Wse2) és szupravezető elektródákkal kontaktálva új fázisok hozhatók létre. A heterostruktúrákból elektron sugaras litográfia segítségével spintronikai és kvantum elektronikai áramkörök készülnek (Josephson átmenet, kvantum-Hall minták, stb.) és viselkedésüket alacsony hőmérsékleti mérésekben tanulmányozzuk. A kutatómunka szoros együttműködésben zajlik több nemzetközi partner intézettel.

 

Titkosítas: 
Hozzáférés nincs korlátozva