Study of edge plasma instabilities in fusion plasma experiments

Nyomtatóbarát változatNyomtatóbarát változat
PhD típus: 
Fizikai Tudományok Doktori Iskola
Év: 
2021/2022
Témavezető: 
Név: 
Dunai Dániel
Email cím: 
dunai.daniel@ek-cer.hu
Kutatóintézet/Tanszék: 
Centre for Energy Research
Beosztás: 
Senior Research Fellow
Tudományos fokozat: 
PhD
Konzulens: 
Név: 
Pokol Gergő
Email cím: 
pokol@reak.bme.hu
Intézet: 
The Institute of Nuclear Techniques, BME
Beosztás: 
associate professor
Tudományos fokozat: 
PhD
Leírás: 

In recent years several alkali diagnostic beam and two dimensional turbulence imaging Beam Emission Spectroscopy (BES) diagnostics have been installed to large fusion experiments by the Fusion Plasma Physics Laboratory of the Centre for Energy Research (CER). Nearly all major European and Asian fusion experiments are equipped with a BES diagnostics, and the Fusion Plasma Physics Laboratory partly operates these diagnostics and is also responsible for the data evaluation. This gives a unique opportunity to participate in the physics program of leading fusion experiments and also to compare results from different experiments.

Edge Localised Modes (ELMs) are disruptive insabilities in edge reagion of fusion plasmas. There are several types of ELMs and understanding of these instabilities is one key issue in fusion plasma physics. The type I ELMy H-mode is the baseline operating scenario for ITER. However, the energy predicted to be released by a type I ELM in ITER is unacceptably high.  The challenge is to produce a non-linear model that can predict when an ELM will be triggered and predict the ELM energy loss.  The present understanding is that type I ELMs result from the peeling-ballooning instability.  In this theory the edge pressure gradient grows in the inter-ELM period until the peeling-ballooning stability boundary is crossed at which point the ELM is triggered.  However, it has been observed on several devices that the experimental profiles can exist near to this stability point for a substantial fraction of the inter-ELM period raising the question: what ultimately triggers the ELM?  Normally there is a large velocity shear at the edge of the H-mode plasma but the non-linear theory (explosive growth stage) of the ELM predicts that the filaments associated with ELMs have to push out through this edge of the plasma and that these filaments can only grow through a region of small velocity shear.  Hence, in order for the ELM to erupt the edge shear velocity has to be reduced. BES diagnostics have unique capabilities to study plasma edge fluctuations and flows.

To characterize ELMs and edge plasma turbulence and compare is the primary aim. A python program package was developed in Centre for Energy Research for fluctuation analysis. A part of the work is to develop numerical methods and implement codes to improve the analysis. These codes are then to be tested in simulated data sets and then used in real measurement results.  

Multi device experimental results have to be compared to computational results. The non-linear MHD code JOREK is used these days to model ELM crash dynamics and to predict ELM size. These calculation results have to be confirmed with experimental results. The calculations are planned to be run in collaboration with Culham Centre for Fusion Energy in UK.

As the experiments are in Europe and Asia strong collaboration is necessary with foreign laboratories. Good English language skills are required. In case of interest participation in experiments as diagnostic operator is also possible in Germany, UK, Korea or China.

 

Elvárások: 

Good command of English language,

Programming skills

Availability to participate in European and optionally in Asian fusion experiments for several weeks.

advantage: experience in python coding

 

Munkahely neve: 
Centre for Energy Research (CER)
Munkahely címe: 
1121 Budapest, Konkoly-Thege Miklós út 29-33.